海洋核能

核能是人類最具希望的未來能源之一。人們開發核能的途徑有兩條:一是重元素的裂變,如鈾的裂變;二是輕元素的聚變,如氘、氚、鋰等。重元素的裂變技術,己得到實際性的應用;而輕元素聚變技術,也正在積極研究之中??刹徽撌侵卦剽?,還是輕元素氘、氚,在海洋中都有相當巨大的儲藏量。

鈾是目前最重要的核燃料,1千克鈾可供利用的能量相當于燃燒2500噸優質煤。然而陸地上鈾的儲藏量并不豐富,且分布極不均勻。只有少數國家擁有有限的鈾礦,全世界較適于開采的只有100萬噸左右,即使加上低品位鈾礦及其副產鈾化物,總量也不超過500萬噸,按消耗量,只夠開采幾十年。而在巨大的海水水體中,卻含有豐富的鈾礦資源。據估計,海水中溶解的鈾的數量可達45億噸,相當于陸地總儲量的幾千倍。如果能將海水中的鈾全部提取出來,所含的裂變能可保證人類幾萬年的能源需要。不過,海水中含鈾的濃度很低,1000噸海水只含有3克鈾。只有先把鈾從海水中提取出來,才能應用。而要從海水中提取鈾,從技術上講是件十分困難的事情,需要處理大量海水,技術工藝十分復雜。但是,人們已經試驗了很多種海水提鈾的辦法,如吸附法、共沉法、氣泡分離法以及藻類生物濃縮法等。

60年代起,日本、英國、聯邦德國等先后著手研究從海水中提取鈾,并且逐漸建立了從海水中提取鈾的多種方法。其中,以水合氧化鈦吸附劑為基礎的無機吸附方法的研究進展最快。評估海水提鈾可行性的依據之一是一種采用高分子粘合劑和水合氧化鉆制成的復合型鈦吸附劑。海水提鈾已從基礎研究轉向開發應用研究的階段。日本已建成年產10千克鈾的中試工廠,一些沿海國家也計劃建造百噸級甚至千噸級工業規模的海水提鈾廠。

氘和氚都是氫的同位素。它們的原子核可以在一定的條件下,互相碰撞聚合成較重的原子核 --氦核,同時釋放巨大的核能。一個碳原子完全燃燒生成二氧化碳時,只放出4電子伏特的能量,而氘-氚反應時能放出1780萬電子伏特的能量。據計算,1 公斤氫燃料,至少可以抵得上4公斤鈾燃料或1萬噸優質

每升海水中含有 0.03克氘。這0.03克氘聚變時釋放出采的能量相當于300升汽油燃燒的能量。海水的總體積為13.7億立方公里,共含有幾億億公斤的氘。這些氘的聚變所釋放出的能量,足以保證人類上百億年的能源消耗。而且氘的提取方法簡便,成本較低,核聚變堆的運行也是十分安全的。因此,以海水中的氘、氚的核聚變能解決人類未來的能源需要'將展示出最好的前景。氘 -氚的核聚變反應,需要在上千萬度乃至上億度的高溫條件下進行。這樣的反應,已經在氫彈上得以實現。用于生產目的的受控熱核聚變在技術上還有許多難題。但是,隨著科學技術的進步,這些難題正在逐步解決的。

1991年11月9日,由l 4個歐洲國家合資,在歐洲聯合環型核裂變裝置上,成功地進行了首次氘-氚受控核聚變試驗,發出了1.8兆瓦電力的聚變能量,持續時間為2秒,溫度高達3億度,比太陽內部的溫度還高20倍。核聚變比核裂變產生的能量效應要高600倍,比煤高1000萬倍。因此,科學家們認為,氘-氚受控核聚變的試驗成功,是人類開發新能源的一個里程碑。在下個世紀,核聚變技術和海洋氘、氚提取技術將會有重大突破。這兩項技術的發展和不斷的成熟,將對人類社會的進步產生重大的影響。

另外,“能源金屬”鋰是用于制造氫彈的重要原料。海洋中每升海水含鋰15~20毫克,海水中鋰總儲量約為2.5×1011噸。隨著受控核聚變技術的發展,同位素鋰6聚變釋放的巨大能量最終將和平服務于人類。鋰還是理想的電池原料,含鋰的鋁鎳合金在航天工業中占有重要位置。此外,鋰在化工、玻璃、電子、陶瓷等領域的應用也有較大發展。因此,全世界對鋰的需求量正以每年7%~11%速度增加。主要是采用蒸發結晶法、沉淀法、溶劑萃取法及離子交換法從鹵水中提取鋰。

重水也是原子能反應堆的減速劑和傳熱介質,也是制造氫彈的原料,海水中含有 2×1014 噸重水,如果人類一直致力的受控熱核聚變的研究得以解決,從海水中大規模提取重水一旦實現,海洋就能為人類提供取之不盡、用之不竭的能源。


QQ在線咨詢
售前咨詢
021-31006762
售后服務
021-31006762
对聊交友app下载